78 research outputs found

    Ab Initio Approach to Second-order Resonant Raman Scattering Including Exciton-Phonon Interaction

    Full text link
    Raman spectra obtained by the inelastic scattering of light by crystalline solids contain contributions from first-order vibrational processes (e.g. the emission or absorption of one phonon, a quantum of vibration) as well as higher-order processes with at least two phonons being involved. At second order, coupling with the entire phonon spectrum induces a response that may strongly depend on the excitation energy, and reflects complex processes more difficult to interpret. In particular, excitons (i.e. bound electron-hole pairs) may enhance the absorption and emission of light, and couple strongly with phonons in resonance conditions. We design and implement a first-principles methodology to compute second-order Raman scattering, incorporating dielectric responses and phonon eigenstates obtained from density-functional theory and many-body theory. We demonstrate our approach for the case of silicon, relating frequency-dependent relative Raman intensities, that are in excellent agreement with experiment, to different vibrations and regions of the Brillouin zone. We show that exciton-phonon coupling, computed from first principles, indeed strongly affect the spectrum in resonance conditions. The ability to analyze second-order Raman spectra thus provides direct insight into this interaction.Comment: 10 pages, 8 figure

    Electron-phonon interaction in Graphite Intercalation Compounds

    Full text link
    Motivated by the recent discovery of superconductivity in Ca- and Yb-intercalated graphite (CaC6_{6} and YbC6_{6}) and from the ongoing debate on the nature and role of the interlayer state in this class of compounds, in this work we critically study the electron-phonon properties of a simple model based on primitive graphite. We show that this model captures an essential feature of the electron-phonon properties of the Graphite Intercalation Compounds (GICs), namely, the existence of a strong dormant electron-phonon interaction between interlayer and π\pi ^{\ast} electrons, for which we provide a simple geometrical explanation in terms of NMTO Wannier-like functions. Our findings correct the oversimplified view that nearly-free-electron states cannot interact with the surrounding lattice, and explain the empirical correlation between the filling of the interlayer band and the occurrence of superconductivity in Graphite-Intercalation Compounds.Comment: 13 pages, 12 figures, submitted to Phys. Rev.

    Electrons and phonons in the ternary alloy CaAl2x_{2-x}Six_x} as a function of composition

    Full text link
    We report a detailed first-principles study of the structural, electronic and vibrational properties of the superconducting C32_{32} phase of the ternary alloy CaAl2x_{2-x}Six_x, both in the experimental range 0.6x1.20.6 \leq x \leq 1.2, for which the alloy has been synthesised, and in the theoretical limits of high aluminium and high silicon concentration. Our results indicate that, in the experimental range, the dependence of the electronic bands on composition is well described by a rigid-band model, which breaks down outside this range. Such a breakdown, in the (theoretical) limit of high aluminium concentration, is connected to the appearance of vibrational instabilities, and results in important differences between CaAl2_2 and MgB2_2. Unlike MgB2_2, the interlayer band and the out-of-plane phonons play a major role on the stability and superconductivity of CaAlSi and related C32_{32} intermetallic compounds

    First-principle study of paraelectric and ferroelectric CsH2_2PO4_4 including dispersion forces: stability and related vibrational, dielectric and elastic properties

    Full text link
    Using density functional theory (DFT) and density functional perturbation theory (DFPT), we investigate the stability and response functions of CsH2_2PO4_4, a ferroelectric material at low temperature. This material cannot be described properly by the usual (semi-)local approximations within DFT. The long-range e^--e^- correlation needs to be properly taken into account, using, for instance, Grimme's DFT-D methods, as investigated in this work. We find that DFT-D3(BJ) performs the best for the members of the dihydrogenated alkali phosphate family (KH2_2PO4_4, RbH2_2PO4_4, CsH2_2PO4_4), leading to experimental lattice parameters reproduced with an average deviation of 0.5 %. With these DFT-D methods, the structural, dielectric, vibrational and mechanical properties of CsH2_2PO4_4 are globally in excellent agreement with the available experiments (<< 2% MAPE for Raman-active phonons). Our study suggests the possible existence of a new low-temperature phase for CsH2_2PO4_4, not yet reported experimentally. Finally, we report the implementation of DFT-D contributions to elastic constants within DFPT.Comment: This paper was published in Physical Review B the 25 January 2017 (21 pages, 4 figures

    Origin of magnetism and quasiparticles properties in Cr-doped TiO2_2

    Full text link
    Combining LSDA+UU and an analysis of superexchange interactions beyond DFT, we describe the magnetic ground states in rutile and anatase Cr-doped TiO2_2. In parallel, we correct our LSDA+UU ground state through GW corrections (GWGW@LSDA+UU) that reproduce the position of impurity states and the band gaps in satisfying agreement with experiments. Because of the different topological coordinations of Cr-Cr bonds in the ground states of rutile and anatase, superexchange interactions induce either ferromagnetic or antiferromagnetic couplings of Cr ions. In Cr-doped anatase, this interaction leads to a new mechanism which stabilizes a ferromagnetic ground state, in keeping with experimental evidence, without the need to invoke F-center exchange.Comment: 5<pages, 4 figure

    Band widths and gaps from the Tran-Blaha functional : Comparison with many-body perturbation theory

    Full text link
    For a set of ten crystalline materials (oxides and semiconductors), we compute the electronic band structures using the Tran-Blaha [Phys. Rev. Lett. 102, 226401 (2009)] (TB09) functional. The band widths and gaps are compared with those from the local-density approximation (LDA) functional, many-body perturbation theory (MBPT), and experiments. At the density-functional theory (DFT) level, TB09 leads to band gaps in much better agreement with experiments than LDA. However, we observe that it globally underestimates, often strongly, the valence (and conduction) band widths (more than LDA). MBPT corrections are calculated starting from both LDA and TB09 eigenenergies and wavefunctions. They lead to a much better agreement with experimental data for band widths. The band gaps obtained starting from TB09 are close to those from quasi-particle self-consistent GW calculations, at a much reduced cost. Finally, we explore the possibility to tune one of the semi-empirical parameters of the TB09 functional in order to obtain simultaneously better band gaps and widths. We find that these requirements are conflicting.Comment: 18 pages, 16 figure

    Computationally-driven, high throughput identification of CaTe and Li3_\textrm{3}Sb as promising candidates for high mobility pp-type transparent conducting materials

    Full text link
    High-performance pp-type transparent conducting materials (TCMs) must exhibit a rare combination of properties including high mobility, transparency and pp-type dopability. The development of high-mobility/conductivity pp-type TCMs is necessary for many applications such as solar cells, or transparent electronic devices. Oxides have been traditionally considered as the most promising chemical space to dig out novel pp-type TCMs. However, non-oxides might perform better than traditional pp-type TCMs (oxides) in terms of mobility. We report on a high-throughput (HT) computational search for non-oxide pp-type TCMs from a large dataset of more than 30,000 compounds which identified CaTe and Li3_\textrm{3}Sb as very good candidates for high-mobility pp-type TCMs. From our calculations, both compounds are expected to be pp-type dopable: intrinsically for Li3_\textrm{3}Sb while CaTe would require extrinsic doping. Using electron-phonon computations, we estimate hole mobilities at room-temperature to be about 20 and 70 cm2^2/Vs for CaTe and Li3_\textrm{3}Sb, respectively. The computed hole mobility for Li3_\textrm{3}Sb is quite exceptional and comparable with the electron mobility in the best nn-type TCMs.Comment: 10 pages, 5 figure

    Generating and grading 34 Optimised Norm-Conserving Vanderbilt Pseudopotentials for Actinides and Super Heavy Elements in the PseudoDojo

    Full text link
    In the last decades, material discovery has been a very active research field driven by the necessity of new materials for different applications. This has also included materials incorporating heavy elements, beyond the stable isotopes of lead. Most of actinides exhibit unique properties that make them useful in various applications. Further, new heavy elements, taking the name of super-heavy elements, have been synthesized, filling previously empty space of Mendeleev periodic table. Their chemical bonding behaviour, of academic interest at present, would also benefit of state-of-the-art modelling approaches. In particular, in order to perform first-principles calculations with planewave basis sets, one needs corresponding pseudopotentials. In this work, we present a series of fully-relativistic optimised norm-conserving Vanderbilt pseudopotentials (ONCVPs) for thirty-four actinides and super-heavy elements. The scalar relativistic version of these ONCVPs is tested by comparing equations of states for crystals, obtained with \textsc{abinit} 9.6, with those obtained by all-electron zeroth-order regular approximation (ZORA) calculations performed with the Amsterdam Modelling Suite BAND code. Δ\Delta-Gauge and Δ1\Delta_1-Gauge indicators are used to validate these pseudopotentials. This work is a contribution to the PseudoDojo project, in which pseudopotentials for the whole periodic table are developed and systematically tested. The fully-relativistic pseudopotential files (i.e. including spin-orbit coupling) are available on the PseudoDojo web-interface pseudo-dojo.org under the name NC FR (ONCVPSP) v4.x. Pseudopotentials are made available in psp8 and UPF2 formats, both convenient for \textsc{abinit}, the latter being also suitable for Quantum ESPRESSO

    Limits to Hole Mobility and Doping in Copper Iodide

    Get PDF
    Over one hundred years have passed since the discovery of the p-type transparent conducting material copper iodide, predating the concept of the “electron−hole” itself. Supercentenarian status notwithstanding, little is understood about the charge transport mechanisms in CuI. Herein, a variety of modeling techniques are used to investigate the charge transport properties of CuI, and limitations to the hole mobility over experimentally achievable carrier concentrations are discussed. Poor dielectric response is responsible for extensive scattering from ionized impurities at degenerately doped carrier concentrations, while phonon scattering is found to dominate at lower carrier concentrations. A phonon-limited hole mobility of 162 cm2 V−1 s−1 is predicted at room temperature. The simulated charge transport properties for CuI are compared to existing experimental data, and the implications for future device performance are discussed. In addition to charge transport calculations, the defect chemistry of CuI is investigated with hybrid functionals, revealing that reasonably localized holes from the copper vacancy are the predominant source of charge carriers. The chalcogens S and Se are investigated as extrinsic dopants, where it is found that despite relatively low defect formation energies, they are unlikely to act as efficient electron acceptors due to the strong localization of holes and subsequent deep transition levels
    corecore